871.最低加油次数
【LetMeFly】871.最低加油次数 - 类似于POJ2431丛林探险
力扣题目链接:https://leetcode.cn/problems/minimum-number-of-refueling-stops/
汽车从起点出发驶向目的地,该目的地位于出发位置东面 target
英里处。
沿途有加油站,每个 station[i]
代表一个加油站,它位于出发位置东面 station[i][0]
英里处,并且有 station[i][1]
升汽油。
假设汽车油箱的容量是无限的,其中最初有 startFuel
升燃料。它每行驶 1 英里就会用掉 1 升汽油。
当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。
为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1
。
注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。
示例 1:
输入:target = 1, startFuel = 1, stations = [] 输出:0 解释:我们可以在不加油的情况下到达目的地。
示例 2:
输入:target = 100, startFuel = 1, stations = [[10,100]] 输出:-1 解释:我们无法抵达目的地,甚至无法到达第一个加油站。
示例 3:
输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]] 输出:2 解释: 我们出发时有 10 升燃料。 我们开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。 然后,我们从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料), 并将汽油从 10 升加到 50 升。然后我们开车抵达目的地。 我们沿途在1两个加油站停靠,所以返回 2 。
提示:
1 <= target, startFuel, stations[i][1] <= 10^9
0 <= stations.length <= 500
0 < stations[0][0] < stations[1][0] < ... < stations[stations.length-1][0] < target
方法一:贪心 + 优先队列
这道题让人很容易想到递归。
这道题可参考题解丛林探险
方法也很简单:
若在可用到达的距离范围内有多个加油站,则将这些加油站点的加油量入队(优先队列)。
若走到下一个加油站之前油会耗尽,则需要加油(优先队列中最大的加油量)后继续走。
当油量大于等于卡车到城镇的距离L时结束。
- 时间复杂度$O(n\log n)$,其中$n$是加油站个数
- 空间复杂度$O(n)$
AC代码
C++
1 |
|
同步发文于CSDN,原创不易,转载请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/125575683
871.最低加油次数
https://blog.letmefly.xyz/2022/07/02/LeetCode 0871.最低加油次数/