2644.找出可整除性得分最大的整数
【LetMeFly】2644.找出可整除性得分最大的整数:暴力模拟(两层循环)
力扣题目链接:https://leetcode.cn/problems/find-the-maximum-divisibility-score/
给你两个下标从 0 开始的整数数组 nums
和 divisors
。
divisors[i]
的 可整除性得分 等于满足 nums[j]
能被 divisors[i]
整除的下标 j
的数量。
返回 可整除性得分 最大的整数 divisors[i]
。如果有多个整数具有最大得分,则返回数值最小的一个。
示例 1:
输入:nums = [4,7,9,3,9], divisors = [5,2,3] 输出:3 解释:divisors 中每个元素的可整除性得分为: divisors[0] 的可整除性得分为 0 ,因为 nums 中没有任何数字能被 5 整除。 divisors[1] 的可整除性得分为 1 ,因为 nums[0] 能被 2 整除。 divisors[2] 的可整除性得分为 3 ,因为 nums[2]、nums[3] 和 nums[4] 都能被 3 整除。 因此,返回 divisors[2] ,它的可整除性得分最大。
示例 2:
输入:nums = [20,14,21,10], divisors = [5,7,5] 输出:5 解释:divisors 中每个元素的可整除性得分为: divisors[0] 的可整除性得分为 2 ,因为 nums[0] 和 nums[3] 都能被 5 整除。 divisors[1] 的可整除性得分为 2 ,因为 nums[1] 和 nums[2] 都能被 7 整除。 divisors[2] 的可整除性得分为 2 ,因为 nums[0] 和 nums[3] 都能被5整除。 由于 divisors[0]、divisors[1] 和 divisors[2] 的可整除性得分都是最大的,因此,我们返回数值最小的一个,即 divisors[2] 。
示例 3:
输入:nums = [12], divisors = [10,16] 输出:10 解释:divisors 中每个元素的可整除性得分为: divisors[0] 的可整除性得分为 0 ,因为 nums 中没有任何数字能被 10 整除。 divisors[1] 的可整除性得分为 0 ,因为 nums 中没有任何数字能被 16 整除。 由于 divisors[0] 和 divisors[1] 的可整除性得分都是最大的,因此,我们返回数值最小的一个,即 divisors[0] 。
提示:
1 <= nums.length, divisors.length <= 1000
1 <= nums[i], divisors[i] <= 109
解题方法:两层循环枚举
外层循环遍历每一个“被除数”,对于某个被除数$d$,记录其“可整除性得分”。
- 如果这个得分大于历史最大得分,更新最大得分并将其暂时视为答案;
- 如果这个得分等于历史最大得分,将它和“临时答案”中最小的那个暂时视为答案。
最终的“临时答案”即为最终答案。
- 时间复杂度$O(len(nums)\times len(divisors))$
- 空间复杂度$O(N\log N)$
本题似乎没有更小的时空复杂度的算法,能做的似乎最多是一些剪枝。
AC代码
C++
1 |
|
Python
1 |
|
同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/139026732
2644.找出可整除性得分最大的整数
https://blog.letmefly.xyz/2024/05/18/LeetCode 2644.找出可整除性得分最大的整数/