1334.阈值距离内邻居最少的城市
【LetMeFly】1334.阈值距离内邻居最少的城市:多次运用单源最短路的迪杰斯特拉算法
有 n
个城市,按从 0
到 n-1
编号。给你一个边数组 edges
,其中 edges[i] = [fromi, toi, weighti]
代表 fromi
和 toi
两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold
。
返回能通过某些路径到达其他城市数目最少、且路径距离 最大 为 distanceThreshold
的城市。如果有多个这样的城市,则返回编号最大的城市。
注意,连接城市 i 和 j 的路径的距离等于沿该路径的所有边的权重之和。
示例 1:
输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 输出:3 解释:城市分布图如上。 每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是: 城市 0 -> [城市 1, 城市 2] 城市 1 -> [城市 0, 城市 2, 城市 3] 城市 2 -> [城市 0, 城市 1, 城市 3] 城市 3 -> [城市 1, 城市 2] 城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。
示例 2:
输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 输出:0 解释:城市分布图如上。 每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是: 城市 0 -> [城市 1] 城市 1 -> [城市 0, 城市 4] 城市 2 -> [城市 3, 城市 4] 城市 3 -> [城市 2, 城市 4] 城市 4 -> [城市 1, 城市 2, 城市 3] 城市 0 在阈值距离 2 以内只有 1 个邻居城市。
提示:
2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
- 所有
(fromi, toi)
都是不同的。
方法一:多次运用单源最短路的迪杰斯特拉算法
迪杰斯特拉算法可以让我们在$O(n^2)$的时间复杂度内求出图中某点到其他所有点的最短路径。
关于单源最短路的迪杰斯特拉算法,推荐查看某人的视频讲解及配套代码。(算法本质是在所有能走的路中选一个最短的能到新节点的路来走)
这样,我们可以写一个函数来获取某个点不超过“distanceThreshold”的“邻居城市”的个数。
使用两个变量分别记录“最少的近邻个数”和“当前答案”,遍历一遍每个节点,计算并更新这两个变量即可得到答案。
- 时间复杂度$O(n^3)$
- 空间复杂度$O(size(graph) + n)$
AC代码
C++
1 |
|
同步发文于CSDN,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/134410277
1334.阈值距离内邻居最少的城市
https://blog.letmefly.xyz/2023/11/14/LeetCode 1334.阈值距离内邻居最少的城市/